P3
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Announcement: Revised TP Dates

see Google spreadsheet on Moodle for your group assignment

TP 2

TP 1 TP 4 TP 5 TP 2

TP 1 TP 4 TP 5 TP 2

TP 1 TP 4 TP 5 TP 2

TP 1 TP 4 TP 3 TP 2 TP 5
TP 1 TP 4 TP 3 TP 2 TP 5
TP 1 TP 4 TP 3 TP 2 TP 5
TP 1 TP 4 TP 3 TP 2 TP 5
TP 5 TP 3 TP 2 TP 1 TP 4

TP 5 TP 3 TP 2 TP 1 TP 4

TP 5 TP 3 TP 2 TP 1 TP 4

TP 5 TP 3 TP 2 TP 1 TP 4
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e Single Chain Properties




2.1
The ldeal Polymer Chain



What Do They Have in Common?

Brownian motion
(gas particles)

a polymer chain a drunk person

® ... can be described by the same statistical approach (the random walk model)

® How can this be used to express the polymer chain size? How does it relate to polymer molecular weight?
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Chain Dimensions

® polymer conformation depends on chain flexibility, interactions between repeat units, and interactions
with the surrounding medium
e example of a hypothetical polymer size: 1010 monomers; magnification factor: 108

collapsed globule random walk extended conformation
(attractive interactions) (no effective interaction) (long-range repulsion)

the ideal polymer chain

® chain sizes may be of vastly different dimensions, strongly depending on parameters like T or solvent
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Simplification of the Polymer Chain

e from atoms and bonds to a chain of beads and links: models with variable repeating unit size, link
sizes, bending and torsion angles

4 —>
AL\
kl - | “——_“»’ ;' _ @ ai ‘

»
o

& K
snapshot of PP (50 repeating units) @ @ Vstmtch — 5(1 - l())2

® ideal polymer chain: no energetic interactions between repeating units
® accurate description of polymer melts and solutions

=PFL
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Polymer Conformations

e conformation: the shape of a molecule resulting from rotation around fixed bonds

methane ethane polyethylene

=

109.5° W/
W -
1 conformation 3 conformations 32" conformations
(fixed bond length (almost free rotation
and angles) around C-C bond)

® the number of possible conformations increases drastically with the chain length
® conformational changes happen on the picosecond time scale
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Energy Landscape of Polymer Conformations

E
eclipsed
eclipsed
@ eclipsed eclipsed @
H
main source of flexibility Ii'_ HR HR " H
is the variation of torsion ®ﬁ ®ﬁ
Mk H,
angles.
gauche(-) gauche(+)
* R AN H R R
trans :
H@H R AE H@H
H H, TN\H H
L,
Ag R
0 60 120 180 240 300 360
@

e rotation around single bonds at r.t. is governed by AE (thermal equilibrium) and Ae¢ (energy barrier)
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Contour Length

o the largest possible end-to-end distance (contour length or projection length), R, ., is an all-trans

ax’
(zig-zag) conformation.

contour length: all-trans conformation
0
[cos —
Rmax — nl 4 . }
7 0 >
[
< >
jection | th: R [ 0
rojection ien . — ni COS —
Pro) . 9 max 9) Example: PE
(maX|mqm tetral@wedral angle: @ = 68°,
end-to-end distance) bond length: [ = 1.54 A

® However, gauche states of torsion angles lead to flexibility in the chain conformation

=PFL
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Gauche and Trans States in PE

e polyethylene chain with 10’000 carbon atoms

~ 310000 ~ynformation - only 1 is all-trans!
n, Ae kJ

— =2 exp(———) for PE: Ae ~ 3.34——

n; ka mol

8
T (K) n,
100 0.036
200 0.264
300 0.524

® typically, all-trans rod-like chain sections comprise fewer than 10 main-chain bonds
® most synthetic polymers are hence quite flexible and are represented as random coils
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Freely Jointed Chain Model

® no restriction upon bond angle and bond rotation

—
e However, < R, > s zero for an isotropic collection of ideal chains

s )

., R polymer chain size

1
<Rn2>7§ na
\_ _/

® polymer chain size represented by the mean-square end-to-end distance

n

n n
<R’>=<R’>=< Zai-Zaj>=253+Zai-aj nlal® + < Zﬁi-ﬁj>=n\a\zznlz
i=1 =1 i=1 i£j i#]

e hence, the root mean-square end-to-end distance is proportional to \/ M < R?>7 \/ﬁ x \/ M
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The “Gaussian” Chain

® an ideal chain can be mapped onto a random walk and obeys Gaussian statistics (see also
: : Exercise Sheet)
3 3R 3 3R
P = eoxp(——2 P4nR*dr = 4rn eoxp(——)R2dr
(27171612) P 2na2) (27ma2) P( 2na2) "
4- A
2.0-

S IS
£ 15- g >
2 =
Z S
3 5 5.
© 1.0- O
2 s
= 5
© ©
S 0.5- S 1- >
o - /

O I I O' I I

0 20 40 60 0 20 40 60
R R

n n

_)
e most probable are conformations with R, = 0, but it’s rms value is finite and proportional to \/E

=PrFL see Reading Recommendation: Takamasa Sakai, Physics of Polymer Gels, 2020 71
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Difference Between Probability Density and Radial Distribution Function

e Consider archery...

Where is the most probable position of
any shot?

What would your average points be?
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End-to-End Distance: Not Always An Appropriate Measure...

2 of =S

block copolymer star polymer branched polymer grafted polymer
:oo‘..O
..‘..‘...:
palm-tree AB, ring coil-cycle-coil brush polymer

® the end-to-end distance of some polymers can not be defined unambiguously

=PFL
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Radius of Gyration

e radius of gyration, Rg, characterises the polymer size of any architecture (including branched or ring

polymers)

2 _ z:—>_—> 2 _ 2: 2
&_NQ(” ”)7NM%

e The mean-square of Rg relates to the mean-squared end-to-end distance for an ideal linear chain:

, nl> < R>>
forlargen: < R:>=— =
o 6 6
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Freely Rotating Chain Model

e all torsion angles —7 < @ < 7 are assumed to be equally probable; tetrahedral angles « are fixed.

. . —> —>
average projection from a; +10n d;: \ a \ cosa

.. —> — —1
average projection from from a +10n a ;: ‘ da ‘ COS J lOl

J

mean square end-to-end distance:

n
<R,f>=n\a\2 < ZEZ-EZ->=n\a\2+2\a\2Zcosj_ia
i#] 1<J

® dependence of < R? > of an ideal linear chain on number of bonds, bond length, and bond angle:

, , [ 1+ cosa
for large n: < R> > = na

1 — cosa
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Hindered Rotation Model

® constant bond lengths and angles, independent torsion angles with hindered rotation by a potential, U

E
eclipsed
eclipsed
@ eclipsed eclipsed @
Ii'_ A HR , R H<H
"hgﬁ "h®ﬁ for large n:
gauche(-) gauche(+)
AE R R 5 , [ 1+ cosa 1 + < cosp >
R@“ trans H TR <R“>=na
Tt N H@H 1 — cosa | — < cosp >
H H H H
H<H
Ag
0 60 120 180 240 300 360
¢
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Chain Flexibility and the Characteristic Ratio

® the mean-square end-to-end distance can be approximated for long chains:

freely jointed chain: C, =1
Flory’s characteristic ratio 1 4 cosa
freely rotating chain C, =
, , Il — cosa
<R*>=C_na
- / 1 + cosa 1 + < cosp >
hindered rotation C,. = v
Il — cosa 1 — < cosp >

® the characteristic ratio is a correction term for chain ridigity/flexibility.

stretched n-a”* freely jointed chain -
. .| chain
conformation: < R? > { 2n - a? freely rotating chain

ridigity
35 .- g2 hindered rotation

random coil:

C.=1 C.> 1

=PFL 77



=PFL

Typical Values of C.. in Solution

® ideal chain behavior in polymer melts or polymer solutions

Polymer Solvent T [°C] Cs
polyethylene 1-dodecanol 138 6.7
polystyrene (atactic) cyclohexane 35 10.2
polypropylene (atactic) cyclohexane 92 6.8
polyisobutylene benzene 24 6.6
polyvinylacetate i-pentanone + hexane 25 8.9
polyoxomethylene aqueous K;SO4 35 4.0
polycarbonate methylenechloride 25 2.2
poly(benzobisoxazole) 93
poly(p-benzamide) 325

. . . . . — ")
® be careful with an interpretation (see Exercise Sheet): o 1 C,=22"
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Examples

several poly(methylmethacrylate)s poly(p-benzamide)

T s . of
OO HNOH/Ilo

9
|

=10 C.=14 C. =203 C. =325

® chain stiffness increases with increasing side chain bulkiness (limited rotation around main chain bonds)

® aromatic rings, double bonds increase the rigidity of a polymer chain
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Deviations from Ideal-Chain Behaviour in PE

e Flory’s characteristic ratio, C,, approaches a finite value only forn — oo (C,, = 6.7 for PE)

n n
S — 1
6- interdependent rotations Cn — Z Ci, Ci, — Z < COSHU- >
n
=1 =l

Independent hindered rotation

local (or non-local, more
far reaching) interaction

free rotation

0 100 100 150 200 250
number of bonds

® real chains: further correlations between bond vectors due to forces acting on individual chain elements

=PFL 80



Kuhn Segments

® real polymer chains can be represented by an equivalent freely-jointed chain:

same projection length: na = Nb
(maximum end-to-end distance)

same end-to-end distance: < R2 > = sz — C’mna2

C_na*
h =
R

max

® ) is the Kuhn segment length which increases with chain stiffness (see also Exercise 4)

=PFL

Kuhn segment
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Real Polymer Chains



Self-Avoiding Random Walk

® real chain: chain segments have a finite volume and they undergo interactions with their surrounding

random walk self-avoiding walk end-to-end distance
L T self-avoiding walk
;_, = x 132
.E!-: m B _ (empirical)
I . :,_L [ - C\l/\
" ‘ .
LB F ; %
l ."&
—a
1000 steps 1000 steps random walk

0 10 20 30 40 50
steps

® real polymer chains may be mapped onto self-avoiding walks (excluded volume by other monomers)
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Effective Interaction Potentials

® polymer conformation is determined by monomer-monomer and monomer-solvent interactions

polymers in solution Zero monomer-monomer net attractive monomer-monomer
interaction interaction

U(r)4 u(r)4

hard-sphere Lennard-Jones

‘ potential potential

s
O

®¢

=

I 4
T 4

r*=72d,

)

equilibrium
distance

® Lennard Jones potential: monomer-monomer attraction, but strong repulsion at short distances

=PrL more about the Lennard-Jones potential in Chapter 4.1



Excluded Volume

e probability of distance r between 2 monomers expressed by Boltzmann’s distribution or Mayer f-function

probability Mayer f-function excluded volume
A A
P U ) U
P(r) o exp| ] J(r) = exp[———1—-1
Lennard-Jones
potential
attractive interactions
decrease v
1 * 0
hard-sphere
!5 potential 5
>

¥ r repulsive interactions 4 .
increase v Vmax = —~(2d,)” = 8vy

max
3

® excluded volume: space that each chain segments blocks to its surrounding

=PFL



athermal

v=(2d,)’ "

no net attraction!

——

chains are swollen

ethyl benzene & PS

Classification of Solvents

good theta
0<v<(2d) y =0 *—
f(r) 4
“enhancement”
due to monomer-
monomer attraction
0

ideal chain behaviour

toluene & PS cyclohexane & PS (1, = 34.5 °C)

poor
2d) <v <0

non-solvent
’ v=—(2d)

f(r) 4

ol

r* r

no net repulsion!

chains are collapsed

EtOH & PS water & PS

® better solvent quality leads to polymer coil expansion, and a lower segmental density in the coil interior

cPrL
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Phase Diagram of Polymer Solutions

e at sufficiently low concentration, chains are well dispersed and do not phase-separate from the solvent

swollen

ideal chain
behaviour

globules

(collapsed chains
conformation)

temperature
D

o example:
v
.. =
) idilute =1 cyclohexane & PS
8 T@ =34.5 OC
c
O
)
binodal
two-phase
composition

e At the O-temperature, polymer behave ideal and are miscible with solvent at any concentration

=PFL

more on Phase Diagrams in Chapter 4.2
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® polymer melts constitute an

® same tendency of all chains to

® as aresult, no chain can expand

Omnipresence of the {-State in Polymer Melts

athermal state (identical “monomer-
monomer” &”“monomer-solvent”

interactions)

expand

® polymer chains adopt their random coil conformation in polymer melts at any temperature!
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Outlook

How does the end-to-end
distance change upon

deformation?

see Chapter 5.1 (Rubber Elasticity)

39



=PFL

Learning Outcome

® every possible conformation of an ideal chain can be mapped onto a random walk

e a common feature to all ideal chain models is that size scales with \/ M for large n

® restrictions in available chain conformation with respect to the freely jointed chain is expressed using
C.., a measure of chain “stiffness”.

® accurate description of all polymer melts and certain behaviour in solution with the ideal chain model

<RZ*>=~C_na*

freely jointed chain freely rotating chain hindered rotating chain
o R,
g2 o - ®
?’:\V; \ )
x ® /s o=
o "°
no torsion and bond bond angle torsion and bond angle
angle restriction restriction restriction

—,—>
C.=1

increased chain rigidity
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